
Corel Painter Tech Note -- ColorTalk™ Annex Notes

Created By: Mark Zimmer

The ColorTalk‘ Annex works on a rectangular selection. It is a language that can be
used to accomplish channel operations on the selection. This annex has the additional
capability of being able to operate on a floater AND the image underneath it, for more
complicated compositing operations.

The language is akin to C in expression syntax. There are predefined identifiers for
referring to the various components of the image or the copy. These are detailed in
definitions below. For instance, if you need to add green into red, you would use:

r = r + g;

Here the red component is referred to as "r" and the green component is referred to as
"g". This statement is applied individually to every pixel selected.

A ColorTalk program can be a number of statements. Statements all end with a
semicolon.

ColorTalk has a number of predefined functions which come with it. These functions
provide for swapping components, linear interpolation, and the usual math stuff.

ColorTalk Definitions

Predefined Identifiers
can all be used as a source

name refers to can be stored into

r Image Red yes
g Image Green yes
b Image Blue yes
a Image Alpha (Mask) yes
h Image Hue yes
s Image Saturation yes
v Image Value yes
pc Image Process Cyan no
pm Image Process Magenta no
py Image Process Yellow no
pk Image Process Black no
cr* Background Red yes
cg* Background Green yes
cb* Background Blue yes
ca* Background Mask yes
ch* Background Hue yes
cs* Background Saturation yes
cv* Background Value yes
cpc* Background Process Cyan no
cpm* Background Process Magenta no
cpy* Background Process Yellow no

cpk* Background Process Black no
x Selection X Fraction no
y Selection Y fraction no
noise Noise function no
xnoise X-dependent Noise no
ynoise Y-dependent Noise no
angle Angle from selection center no
distance Distance from selection center no
grain Grain function no

*name available for use only when operating on a floater.

Predefined Functions and Procedures

calling example what it does

a = min(b, c); a is replaced by the lesser of b and c
a = max(b, c); a is replaced by the greater of b and c
a = pow(b, c); a is replaced by b raised to the power c
a = log(b); a is replaced by the natural logarithm of b
a = exp(b); a is replaced by "e" raised to the power b
a = sin(b); a is replaced by the trigonometric sine of b
a = cos(b); a is replaced by the trigonometric cosine of b
a = lerp(b, c, d); a is replaced by b*(1-d) + c*d (uses d to mix between b and c)
swap(a, b); a's and b's values are swapped
a = sqrt(b); a is replaced by the square root of b
a = usin(b); a is replaced by (sine(b*2*PI) + 1) / 2
a = ucos(b); a is replaced by (cosine(b*2*PI) + 1) / 2
a = atan2(y, x); a is replaced by the arctangent of y over x, with the proper sign
a = uatan2(y, x); a is replaced by atan2(y, x) / (2*PI)
a = step(b, c); if b is greater than c, then a is replaced by 1, otherwise 0
a = uclip(b); a is replaced by b mod 1.0
a = xfposmap(b, c); a is replaced by b remapped by the x fraction index function in c
a = abs(b); a is replaced by the absolute value of b

Numbers
any integer or floating point number from -8 to 7.99 is legal

Statements and Delimiters

delimiter usage

; semicolons are used to separate multiple statements
, commas are used in procedure and function calls
() parentheses bound expressions, and are used in calls

Operators
notation is standard infix, related to C expressions

operator name example same as

= assignment a = b;
+ addition a = b + c;
- subtraction a = b - c;
* multiplication a = b * c;
/ division a = b / c;
+= add into a += b; a = a + b;
-= subtract out of a -= b; a = a - b;
*= multiply into a *= b; a = a * b;
/= divide out of a /= b; a = a / b;

Example Programs

(1) luminance evaluation

This program transfers luminance to mask (denoted by A), like "copy to mask
luminance". The NTSC definition of luminance is used here. As you can see, simple
mathematical expressions can be used.

a = r*0.30 + g*0.59 + b*0.11;

(2) Hue Value Chart

This program uses the built-in values x and y to make a two-dimensional chart. It first
sets up a value ramp vertically, then sets saturation to 1, then sets up a hue ramp
horizontally.

v = y; s = 1; h = x;

(3) b/w at left to color on the right

This program takes any color image and sets up a horizontal saturation ramp. The right
side of the image is kept as full color. The color drops off continuously so the the image
becomes black and white at the left. Note that rather than replacing saturation, we are
multiplying it by a ramped value, which is automatically available in x.

s *= x;

(4) increase the saturation of an image

This program uses the POW function to gamma correct saturation. This increases it in a
continuous way across the full range of saturations. This can be applied to any color
image.

s = pow(s, 0.75);

(5) diagonal ramp

This program constructs a diagonal gray ramp in the selection. The upper left corner will
be black and the lower right corner will be white. Different values of the linear
interpolation fraction simply lead to different ramp angles.

v = lerp(x, y, 0.5);

(6) hard contrast RGB

This program runs on any image, and converts a soft contrast to a hard one. A simple
cubic function is used on all 3 components.

r = 3*r*r - 2*r*r*r; g = 3*g*g - 2*g*g*g; b = 3*b*b - 2*b*b*b;

(7) simple gamma correction

This program raises the red, green, and blue components to a power in order to darken the
picture. The gamma factor is 1.8.

r = pow(r, 1.8); g = pow(g, 1.8); b = pow(b, 1.8);

