Subversion Repositories autosfx

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 daniel-mar 1
#include "stdafx.h"
2
#pragma hdrstop
3
 
4
#include <stdio.h>
5
#include "UnzInf.h"
6
#include "dz_errs.h"
7
 
8
#undef _DZ_FILE_
9
#define _DZ_FILE_ DZ_UINFLATE_CPP
10
/*
11
  Inflate.c -
12
 
13
  Copyright (c) 1990-2007 Info-ZIP.  All rights reserved.
14
 
15
  See the accompanying file LICENSE, version 2007-Mar-4 or later
16
  (the contents of which are also included in zip.h) for terms of use.
17
  If, for some reason, all these files are missing, the Info-ZIP license
18
  also may be found at:  ftp://ftp.info-zip.org/pub/infozip/license.html
19
 
20
  parts Copyright (C) 1997 Mike White, Eric W. Engler
21
************************************************************************
22
 Copyright (C) 2009, 2010  by Russell J. Peters, Roger Aelbrecht
23
 
24
   This file is part of TZipMaster Version 1.9.
25
 
26
    TZipMaster is free software: you can redistribute it and/or modify
27
    it under the terms of the GNU Lesser General Public License as published by
28
    the Free Software Foundation, either version 3 of the License, or
29
    (at your option) any later version.
30
 
31
    TZipMaster is distributed in the hope that it will be useful,
32
    but WITHOUT ANY WARRANTY; without even the implied warranty of
33
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34
    GNU Lesser General Public License for more details.
35
 
36
    You should have received a copy of the GNU Lesser General Public License
37
    along with TZipMaster.  If not, see <http://www.gnu.org/licenses/>.
38
 
39
    contact: problems@delphizip.org (include ZipMaster in the subject).
40
    updates: http://www.delphizip.org
41
    DelphiZip maillist subscribe at http://www.freelists.org/list/delphizip
42
************************************************************************/
43
 
44
/* inflate.c -- put in the public domain by Mark Adler
45
 * This version modified by Chris Vleghert and Eric W. Engler
46
 * for BCB/Delphi Zip, Jun 18, 2000.
47
 */
48
 
49
/* Inflate deflated (PKZIP's method 8 compressed) data.  The compression
50
 * method searches for as much of the current string of bytes (up to a
51
 * length of 258) in the previous 32K bytes.  If it doesn't find any
52
 * matches (of at least length 3), it codes the next byte.  Otherwise, it
53
 * codes the length of the matched string and its distance backwards from
54
 * the current position.  There is a single Huffman code that codes both
55
 * single bytes (called "literals") and match lengths.  A second Huffman
56
 * code codes the distance information, which follows a length code.  Each
57
 * length or distance code actually represents a base value and a number
58
 * of "extra" (sometimes zero) bits to get to add to the base value.  At
59
 * the end of each deflated block is a special end-of-block (EOB) literal/
60
 * length code.  The decoding process is basically: get a literal/length
61
 * code; if EOB then done; if a literal, emit the decoded byte; if a
62
 * length then get the distance and emit the referred-to bytes from the
63
 * sliding window of previously emitted data.
64
 *
65
 * There are (currently) three kinds of inflate blocks: stored, fixed, and
66
 * dynamic.  The compressor outputs a chunk of data at a time and decides
67
 * which method to use on a chunk-by-chunk basis.  A chunk might typically
68
 * be 32K to 64K, uncompressed.  If the chunk is uncompressible, then the
69
 * "stored" method is used.  In this case, the bytes are simply stored as
70
 * is, eight bits per byte, with none of the above coding.  The bytes are
71
 * preceded by a count, since there is no longer an EOB code.
72
 *
73
 * If the data are compressible, then either the fixed or dynamic methods
74
 * are used.  In the dynamic method, the compressed data are preceded by
75
 * an encoding of the literal/length and distance Huffman codes that are
76
 * to be used to decode this block.  The representation is itself Huffman
77
 * coded, and so is preceded by a description of that code.  These code
78
 * descriptions take up a little space, and so for small blocks, there is
79
 * a predefined set of codes, called the fixed codes.  The fixed method is
80
 * used if the block ends up smaller that way (usually for quite small
81
 * chunks); otherwise the dynamic method is used.  In the latter case, the
82
 * codes are customized to the probabilities in the current block and so
83
 * can code it much better than the pre-determined fixed codes can.
84
 *
85
 * The Huffman codes themselves are decoded using a multi-level table
86
 * lookup, in order to maximize the speed of decoding plus the speed of
87
 * building the decoding tables.  See the comments below that precede the
88
 * lbits and dbits tuning parameters.
89
 * GRR:  return values(?)
90
 *         0  OK
91
 *         1  incomplete table
92
 *         2  bad input
93
 *         3  not enough memory
94
 */
95
 
96
/*
97
 * Notes beyond the 1.93a appnote.txt:
98
 *  1. Distance pointers never point before the beginning of the output
99
 *     stream.
100
 *  2. Distance pointers can point back across blocks, up to 32k away.
101
 *  3. There is an implied maximum of 7 bits for the bit length table and
102
 *     15 bits for the actual data.
103
 *  4. If only one code exists, then it is encoded using one bit.  (Zero
104
 *     would be more efficient, but perhaps a little confusing.)  If two
105
 *     codes exist, they are coded using one bit each (0 and 1).
106
 *  5. There is no way of sending zero distance codes--a dummy must be
107
 *     sent if there are none.  (History: a pre 2.0 version of PKZIP would
108
 *     store blocks with no distance codes, but this was discovered to be
109
 *     too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
110
 *     zero distance codes, which is sent as one code of zero bits in
111
 *     length.
112
 *  6. There are up to 286 literal/length codes.  Code 256 represents the
113
 *     end-of-block.  Note however that the static length tree defines
114
 *     288 codes just to fill out the Huffman codes.  Codes 286 and 287
115
 *     cannot be used though, since there is no length base or extra bits
116
 *     defined for them.  Similarily, there are up to 30 distance codes.
117
 *     However, static trees define 32 codes (all 5 bits) to fill out the
118
 *     Huffman codes, but the last two had better not show up in the data.
119
 *  7. Unzip can check dynamic Huffman blocks for complete code sets.
120
 *     The exception is that a single code would not be complete (see #4).
121
 *  8. The five bits following the block type is really the number of
122
 *     literal codes sent minus 257.
123
 *  9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
124
 *     (1+6+6).  Therefore, to output three times the length, you output
125
 *     three codes (1+1+1), whereas to output four times the same length,
126
 *     you only need two codes (1+3).  Hmm.
127
 * 10. In the tree reconstruction algorithm, Code = Code + Increment
128
 *     only if BitLength(i) is not zero.  (Pretty obvious.)
129
 * 11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
130
 * 12. Note: length code 284 can represent 227-258, but length code 285
131
 *     really is 258.  The last length deserves its own, short code
132
 *     since it gets used a lot in very redundant files.  The length
133
 *     258 is special since 258 - 3 (the min match length) is 255.
134
 * 13. The literal/length and distance code bit lengths are read as a
135
 *     single stream of lengths.  It is possible (and advantageous) for
136
 *     a repeat code (16, 17, or 18) to go across the boundary between
137
 *     the two sets of lengths.
138
 * 14. The Deflate64 (PKZIP method 9) variant of the compression algorithm
139
 *     differs from "classic" deflate in the following 3 aspect:
140
 *     a) The size of the sliding history window is expanded to 64 kByte.
141
 *     b) The previously unused distance codes #30 and #31 code distances
142
 *        from 32769 to 49152 and 49153 to 65536.  Both codes take 14 bits
143
 *        of extra data to determine the exact position in their 16 kByte
144
 *        range.
145
 *     c) The last lit/length code #285 gets a different meaning. Instead
146
 *        of coding a fixed maximum match length of 258, it is used as a
147
 *        "generic" match length code, capable of coding any length from
148
 *        3 (min match length + 0) to 65538 (min match length + 65535).
149
 *        This means that the length code #285 takes 16 bits (!) of uncoded
150
 *        extra data, added to a fixed min length of 3.
151
 *     Changes a) and b) would have been transparent for valid deflated
152
 *     data, but change c) requires to switch decoder configurations between
153
 *     Deflate and Deflate64 modes.
154
 */
155
 
156
#define PKZIP_BUG_WORKAROUND    /* PKZIP 1.93a problem--live with it */
157
 
158
/*  inflate.h must supply the uch slide[UWSIZE] array, the void typedef
159
 *  (void if (void *) is accepted, else char) and the NEXTBYTE,
160
 *  FLUSH() and memzero macros.  If the window size is not 32K, it
161
 *  should also define UWSIZE.  If INFMOD is defined, it can include
162
 *  compiled functions to support the NEXTBYTE and/or FLUSH() macros.
163
 *  There are defaults for NEXTBYTE and FLUSH() below for use as
164
 *  examples of what those functions need to do.  Normally, you would
165
 *  also want FLUSH() to compute a crc on the data.  inflate.h also
166
 *  needs to provide these typedefs:
167
 *      typedef unsigned char  uch;
168
 *      typedef unsigned short ush;
169
 *      typedef unsigned long  ulg;
170
 */
171
 
172
/*
173
#ifdef USING_MEM_STRMS
174
#define FLUSH(w)  ((fmem_mode)? MemFlush(Slide, (ulg)(w)) \
175
                      : flush(Slide, (ulg)(w), 0))
176
#else */
177
//#define FLUSH(w)  (flush(Slide, (ulg)(w), 0))
178
//#endif
179
//#define NEXTBYTE  (--fincnt >= 0 ? (int)(*finptr++) : readbyte(pG))
180
 
181
#define READBITS(nbits, zdest) { if(nbits>fbits_left) {int temp; fzipeof = 1; \
182
  while (fbits_left <= 8 *(sizeof(fbitbuf)- 1) && (temp = NEXTBYTE) != EOF) { \
183
  fbitbuf |= (ulg)temp << fbits_left; fbits_left += 8; fzipeof = 0;}} \
184
  zdest = (shrint)((ush)fbitbuf & mask_bits[nbits]); fbitbuf >>= nbits; \
185
  fbits_left -= nbits; }
186
 
187
//#ifndef NEXTBYTE                /* default is to simply get a byte from stdin */
188
//error NEXTBYTE not defined
189
////#  define NEXTBYTE getchar()
190
//#endif
191
 
192
//#ifndef FLUSH                   /* default is to simply write the buffer to stdout */
193
//error FLUSH not defined
194
//#  define FLUSH(n) fwrite(Slide, 1, n, stdout) /* return value not used */
195
//#endif
196
 
197
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
198
 * stream to find repeated byte strings.  This is implemented here as a
199
 * circular buffer.  The index is updated simply by incrementing and then
200
 * and'ing with 0x7fff (32K-1).
201
 * It is left to other modules to supply the 32K area.  It is assumed
202
 * to be usable as if it were declared "uch slide[32768];" or as just
203
 * "uch *slide;" and then malloc'ed in the latter case.  The definition
204
 * must be in unzip.h, included above.
205
 */
206
#define INVALID_CODE 99
207
#define IS_INVALID_CODE(c)  ((c) == INVALID_CODE)
208
/* Tables for deflate from PKZIP's appnote.txt. */
209
static const unsigned border[]  =
210
  {      /* Order of the bit length code lengths */
211
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
212
  };
213
static const ush cplens32[]  =
214
  {   /* Copy lengths for literal codes 257..285 */
215
    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
216
    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
217
  };
218
/* note: see note #13 above about the 258 in this list. */
219
static const ush cplens64[] =
220
  {
221
    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
222
    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 3, 0, 0
223
  };
224
/* For Deflate64, the code 285 is defined differently. */
225
static const uch cplext32[]  =
226
  {   /* Extra bits for literal codes 257..285 */
227
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
228
    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, INVALID_CODE, INVALID_CODE
229
  }
230
  ;                              /* 99==invalid */
231
static const uch cplext64[] =
232
  {
233
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
234
    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16, INVALID_CODE, INVALID_CODE
235
  };
236
 
237
static const ush cpdist[]  =
238
  {   /* Copy offsets for distance codes 0..29 */
239
    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
240
    257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
241
    8193, 12289, 16385, 24577, 32769, 49153
242
  };
243
static const uch cpdext32[]  =
244
  {   /* Extra bits for distance codes */
245
    0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
246
    7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
247
    12, 12, 13, 13, INVALID_CODE, INVALID_CODE
248
  };
249
static const uch cpdext64[] =
250
  {
251
    0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
252
    7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
253
    12, 12, 13, 13, 14, 14
254
  };
255
#define MAXLITLENS 288
256
#define MAXDISTS 32
257
 
258
/* Macros for inflate() bit peeking and grabbing.
259
 * The usage is:
260
 *      NEEDBITS(j)
261
 *      x = b & mask_bits[j];
262
 *      DUMPBITS(j)
263
 * where NEEDBITS makes sure that b has at least j bits in it, and
264
 * DUMPBITS removes the bits from b.  The macros use the variable k
265
 * for the number of bits in b.  Normally, b and k are register
266
 * variables for speed and are initialized at the begining of a
267
 * routine that uses these macros from a global bit buffer and count.
268
 *
269
 * In order to not ask for more bits than there are in the compressed
270
 * stream, the Huffman tables are constructed to only ask for just
271
 * enough bits to make up the end-of-block code (value 256).  Then no
272
 * bytes need to be "returned" to the buffer at the end of the last
273
 * block.  See the huft_build() routine.
274
 */
275
 
276
//#  define NEXTBYTE  (--fincnt >= 0 ? (int)(*finptr++) : readbyte())
277
#ifndef CHECK_EOF
278
#  define CHECK_EOF             /* default as of 5.13/5.2 */
279
#endif
280
 
281
#ifndef CHECK_EOF
282
#  define NEEDBITS(n) {while(k < (n)) {b |= ((ulg)NEXTBYTE) << k;k += 8;} }
283
#else
284
//#  define NEEDBITS(n) {while(k < (n)) {int c = NEXTBYTE; if (c == EOF) return 1;
285
//    b |= ((ulg)c) << k; k += 8;} }
286
#ifdef TRACE_INFLATE
287
#  define NEEDBITS(n) {while((int)k < (int)(n)) {int c = NEXTBYTE; if (c == EOF){\
288
     if ((int)k>=0)break;retval=1; \
289
     if (Verbose < 0) Notify(ITRACE, "eos %s", __LINE__); goto fini;} \
290
    b |= ((ulg)c) << k; k += 8;} }
291
#else
292
#  define NEEDBITS(n) {while((int)k < (int)(n)) {int c = NEXTBYTE; if (c == EOF){\
293
     if ((int)k>=0)break;retval=1;goto fini;} \
294
    b |= ((ulg)c) << k; k += 8;} }
295
#endif
296
#endif /* Piet Plomp:  change "return 1" to "break" */
297
 
298
#define DUMPBITS(n) {b >>= (n); k -= (n);}
299
 
300
/* Huffman code decoding is performed using a multi-level table lookup.
301
 * The fastest way to decode is to simply build a lookup table whose
302
 * size is determined by the longest code.  However, the time it takes
303
 * to build this table can also be a factor if the data being decoded
304
 * are not very long.  The most common codes are necessarily the
305
 * shortest codes, so those codes dominate the decoding time, and hence
306
 * the speed.  The idea is you can have a shorter table that decodes the
307
 * shorter, more probable codes, and then point to subsidiary tables for
308
 * the longer codes.  The time it costs to decode the longer codes is
309
 * then traded against the time it takes to make longer tables.
310
 *
311
 * This results of this trade are in the variables lbits and dbits
312
 * below.  lbits is the number of bits the first level table for literal/
313
 * length codes can decode in one step, and dbits is the same thing for
314
 * the distance codes.  Subsequent tables are also less than or equal to
315
 * those sizes.  These values may be adjusted either when all of the
316
 * codes are shorter than that, in which case the longest code length in
317
 * bits is used, or when the shortest code is *longer* than the requested
318
 * table size, in which case the length of the shortest code in bits is
319
 * used.
320
 *
321
 * There are two different values for the two tables, since they code a
322
 * different number of possibilities each.  The literal/length table
323
 * codes 286 possible values, or in a flat code, a little over eight
324
 * bits.  The distance table codes 30 possible values, or a little less
325
 * than five bits, flat.  The optimum values for speed end up being
326
 * about one bit more than those, so lbits is 8+1 and dbits is 5+1.
327
 * The optimum values may differ though from machine to machine, and
328
 * possibly even between compilers.  Your mileage may vary.
329
 */
330
 
331
static const int lbits = 9;     /* bits in base literal/length lookup table */
332
static const int dbits = 6;     /* bits in base distance lookup table       */
333
 
334
//#  define NEXTBYTE  (--fincnt >= 0 ? (int)(*finptr++) : readbyte())
335
 
336
int huft_free(struct huft *t);
337
 
338
/* ===========================================================================
339
 * inflate (decompress) the codes in a deflated (compressed) block.
340
 * Return an error code or zero if it all goes ok.
341
        *tl, *td :: Literal/length and distance decoder tables.
342
         bl, bd  :: Number of bits decoded by tl[] and td[].
343
 */
344
int UnzInf::inflate_codes(struct huft *tl, struct huft *td, int bl, int bd)
345
{
346
  register unsigned e;          /* table entry flag/number of extra bits  */
347
  unsigned n, d;                /* length and index for copy */
348
  unsigned w;                   /* current window position */
349
  struct huft *t;               /* pointer to table entry */
350
  unsigned ml, md;              /* masks for bl and bd bits */
351
  register ulg b;               /* bit buffer   */
352
  register unsigned k;          /* number of bits in bit buffer   */
353
  int retval = 0;
354
 
355
#ifdef TRACE_INFLATE
356
  if (Verbose < 0)
357
    Notify(ITRACE, _T("inflate codes"));
358
#endif
359
  /* make local copies of globals */
360
  b = fbb;                   /* initialize bit buffer    */
361
  k = fbk;
362
  w = fwp;                   /* initialize window position */
363
 
364
  /* inflate the coded data */
365
  ml = mask_bits[bl];           /* precompute masks for speed */
366
  md = mask_bits[bd];
367
 
368
  while (1)
369
  {                   /* do until end of block   */
370
    NEEDBITS((unsigned)  bl)
371
    t = tl + ((unsigned)  b & ml);
372
    while (1)
373
    {
374
      DUMPBITS(t->b)
375
 
376
      if ((e = t->e) == 32)     /* then it's a literal */
377
      {
378
        Slide[w++] = (uch)t->v.n;
379
//#ifdef USE_STRM_OUTPUT
380
//              if (fredirect_data && !(w % 0x8000))    // RCV1.6019
381
//              {
382
//                // bump up progress bar
383
//                UserProgress(0x8000);
384
//              }
385
//#endif
386
                if (w == wsize)
387
                {
388
//                if ((retval = FLUSH(w)) != 0)
389
                  if ((retval = flush(Slide, (ulg)(w), 0)) != 0)
390
                        goto fini;
391
          w = 0;
392
        }
393
        break;
394
      }
395
 
396
      if (e < 31)               /* then it's a length */
397
      {
398
        /* get length of block to copy */
399
        NEEDBITS(e)
400
        n = t->v.n + ((unsigned)b & mask_bits[e]);
401
        DUMPBITS(e)
402
 
403
        /* decode distance of block to copy */
404
        NEEDBITS(bd)
405
        t = td + ((unsigned)b & md);
406
        while (1)
407
        {
408
          DUMPBITS(t->b)
409
          if ((e = t->e) < 32)
410
            break;
411
          if (IS_INVALID_CODE(e))
412
            return 1;
413
          e &= 31;
414
          NEEDBITS(e)
415
          t = t->v.t + ((unsigned)b & mask_bits[e]);
416
        }
417
        NEEDBITS(e)
418
        d = (unsigned)w - t->v.n - ((unsigned)b & mask_bits[e]);
419
        DUMPBITS(e)
420
 
421
        /* do the copy */
422
        do
423
        {
424
//#ifdef USE_STRM_OUTPUT
425
//                if (fredirect_data && !fUseInStream)
426
//                {       /* &= w/ wsize unnecessary & wrong if redirect      */
427
//                      if (d >= wsize)
428
//                        return 1;   // invalid compression data
429
//                      e = (unsigned)(wsize - (d > (unsigned)w ? (ulg)d : w));
430
//                }
431
//                else
432
//#endif
433
            e = (unsigned)(wsize -
434
                           ((d &= (unsigned)(wsize-1)) > (unsigned)w ?
435
                            (ulg)d : w));
436
          if ((ulg)e > n)
437
            e = (unsigned)n;
438
          n -= e;
439
//#ifndef NOMEMCPY
440
                  if (w - d >= e)
441
          {       /* (this test assumes unsigned comparison)              */
442
            memcpy(Slide + w, Slide + d, e);
443
//#ifdef USE_STRM_OUTPUT
444
//                      if (fredirect_data && ((w + e)  / 0x8000 - w / 0x8000))      // RCV1.6022
445
//                      {
446
//                        // bump up progress bar
447
//                        UserProgress(0x8000);
448
//                      }
449
//#endif
450
            w += e;
451
            d += e;
452
          }
453
          else                    /* do it slowly to avoid memcpy() overlap */
454
//#  endif /* !NOMEMCPY */
455
                        do
456
            {
457
              Slide[w++]  = Slide[d++];
458
//# ifdef USE_STRM_OUTPUT
459
//                        if (fredirect_data && !(w % 0x8000))      // RCV1.6019 1.6022
460
//                        {
461
//                              // bump up progress bar
462
//                              UserProgress(0x8000);
463
//                        }
464
//#  endif
465
            }
466
            while (--e);
467
 
468
 
469
          if (w == wsize)
470
                  {
471
//                      if ((retval = FLUSH(w)) != 0)
472
                        if ((retval = flush(Slide, (ulg)(w), 0)) != 0)
473
              goto fini;
474
            w = 0;
475
          }
476
        }
477
        while (n);
478
        break;
479
      }
480
 
481
      if (e == 31)              /* it's the EOB signal */
482
      {
483
        /* sorry for this goto, but we have to exit two loops at once */
484
        goto clean1;
485
      }
486
 
487
      if (IS_INVALID_CODE(e))
488
        return 1;
489
 
490
      e &= 31;
491
      NEEDBITS(e)
492
      t = t->v.t + ((unsigned)b & mask_bits[e]);
493
    }
494
  }
495
clean1:
496
  /* restore the globals from the locals */
497
  fwp = w;                   /* restore global window pointer */
498
  fbb = b;                   /* restore global bit buffer */
499
  fbk = k;
500
fini:
501
#ifdef TRACE_INFLATE
502
  if (Verbose < 0)
503
    Notify(ITRACE, _T("inflate_codes returning %d"), retval);
504
#endif
505
  return retval;
506
}
507
 
508
 
509
/* ===========================================================================
510
 * "decompress" an inflated type 0 (stored) block.
511
 */
512
int UnzInf::inflate_stored(void)
513
{
514
  unsigned n;                   /* number of bytes in block    */
515
  unsigned w;                   /* current window position   */
516
  register ulg b;               /* bit buffer      */
517
  register unsigned k;          /* number of bits in bit buffer   */
518
  int retval = 0;
519
 
520
  /* make local copies of globals */
521
#ifdef TRACE_INFLATE
522
  if (Verbose < 0)
523
    Notify(ITRACE, _T("extracting files from stored block"));
524
#endif
525
  b = fbb;                   /* initialize bit buffer      */
526
  k = fbk;
527
  w = fwp;                   /* initialize window position */
528
 
529
  /* go to byte boundary */
530
  n = k & 7;
531
  DUMPBITS(n);
532
 
533
  /* get the length and its complement */
534
  NEEDBITS(16)
535
  n = ((unsigned)  b & 0xffff);
536
  DUMPBITS(16)
537
  NEEDBITS(16)
538
  if (n != (unsigned)((~b)  & 0xffff))
539
  {
540
#ifdef TRACE_INFLATE
541
  if (Verbose < 0)
542
    Notify(ITRACE, _T("error in compressed stored data"));
543
#endif
544
    return 1;                   /* error in compressed data */
545
  }
546
  DUMPBITS(16)
547
 
548
  /* read and output the compressed data */
549
  while (n--)
550
  {
551
    NEEDBITS(8)
552
    Slide[w++]  = (uch)  b;
553
//# ifdef USE_STRM_OUTPUT
554
//      if (fredirect_data && !(w % 0x8000))      // RCV1.6019
555
//      {
556
//        // bump up progress bar
557
//        UserProgress(0x8000);
558
//      }
559
//#  endif
560
    if (w == wsize)
561
        {
562
//        if ((retval = FLUSH(w)) != 0)
563
          if ((retval = flush(Slide, (ulg)(w), 0)) != 0)
564
        goto fini;
565
      w = 0;
566
    }
567
    DUMPBITS(8)
568
  }
569
  /* restore the globals from the locals */
570
  fwp = w;                   /* restore global window pointer */
571
  fbb = b;                   /* restore global bit buffer */
572
  fbk = k;
573
fini:
574
  return retval;
575
}
576
 
577
 
578
/* ===========================================================================
579
 * decompress an inflated type 1 (fixed Huffman codes) block.  We should
580
 * either replace this with a custom decoder, or at least precompute the
581
 * Huffman tables.
582
 */
583
int UnzInf::inflate_fixed(void)
584
{
585
  /* if first time, set up tables for fixed blocks */
586
#ifdef TRACE_INFLATE
587
  if (Verbose < 0)
588
    Notify(ITRACE, _T("literal block"));
589
#endif
590
  if (ffixed_tl == (struct huft *)  NULL)
591
  {
592
    int i;                      /* temporary variable                      */
593
    unsigned l[288];            /* length list for huft_build */
594
 
595
    /* literal table */
596
    for (i = 0; i < 144; i++)
597
      l[i]  = 8;
598
    for (; i < 256; i++)
599
      l[i]  = 9;
600
    for (; i < 280; i++)
601
      l[i]  = 7;
602
    for (; i < 288; i++)
603
      l[i]  = 8;                 /* make a complete, but wrong code set */
604
 
605
    ffixed_bl = 7;
606
    if ((i =
607
           huft_build(l, 288, 257, fcplens, fcplext, &ffixed_tl,
608
                      &ffixed_bl))  != 0)
609
    {
610
      ffixed_tl = (struct huft *)  NULL;
611
      return i;
612
    }
613
    /* distance table */
614
    for (i = 0; i < MAXDISTS; i++)
615
      l[i]  = 5;                 /* make an incomplete code set */
616
 
617
    ffixed_bd = 5;
618
    if ((i =
619
           huft_build(l, MAXDISTS, 0, cpdist, fcpdext, &ffixed_td,
620
                      &ffixed_bd))  > 1)
621
    {
622
      huft_free(ffixed_tl);
623
      ffixed_tl = (struct huft *)  NULL;
624
      return i;
625
    }
626
  }
627
  /* Decompress until an end-of-block code. */
628
  return inflate_codes(ffixed_tl, ffixed_td, ffixed_bl,
629
                       ffixed_bd)  != 0;
630
}
631
 
632
 
633
/* ===========================================================================
634
 * decompress an inflated type 2 (dynamic Huffman codes) block.
635
 */
636
int UnzInf::inflate_dynamic(void)
637
{
638
  int i;                        /* temporary variables    */
639
  unsigned j;
640
  unsigned l;                   /* last length     */
641
  unsigned m;                   /* mask for bit lengths table   */
642
  unsigned n;                   /* number of lengths to get   */
643
  int bl;                       /* lookup bits for tl      */
644
  int bd;                       /* lookup bits for td      */
645
  unsigned nb;                  /* number of bit length codes     */
646
  unsigned nl;                  /* number of literal/length codes   */
647
  unsigned nd;                  /* number of distance codes    */
648
  int retval;// =0;
649
  struct huft *tl = NULL;              /* literal/length code table     */
650
  struct huft *td = NULL;              /* distance code table         */
651
//#ifdef PKZIP_BUG_WORKAROUND
652
  unsigned ll[288 + MAXDISTS]; /* literal/length and distance code lengths */
653
//#else
654
//  unsigned ll[286 + 30];        /* literal/length and distance code lengths */
655
//#endif
656
  register ulg b;               /* bit buffer */
657
  register unsigned k;          /* number of bits in bit buffer */
658
 
659
  /* make local bit buffer */
660
#ifdef TRACE_INFLATE
661
  if (Verbose < 0)
662
    Notify(ITRACE, _T("in inflate_dynamic"));
663
#endif
664
  b = fbb;
665
  k = fbk;
666
 
667
  /* read in table lengths */
668
  NEEDBITS(5)
669
  nl = 257 + ((unsigned)  b & 0x1f);   /* number of literal/length codes */
670
  DUMPBITS(5)
671
  NEEDBITS(5)
672
  nd = 1 + ((unsigned)  b & 0x1f);     /* number of distance codes */
673
  DUMPBITS(5)
674
  NEEDBITS(4)
675
  nb = 4 + ((unsigned)  b & 0xf);      /* number of bit length codes */
676
  DUMPBITS(4)
677
//#ifdef PKZIP_BUG_WORKAROUND
678
  if (nl > MAXLITLENS || nd > MAXDISTS)
679
//#else
680
//  if (nl > 286 || nd > 30)
681
//#endif
682
    return 1;                   /* bad lengths */
683
 
684
  /* read in bit-length-code lengths */
685
  for (j = 0; j < nb; j++)
686
  {
687
    NEEDBITS(3)
688
    ll[border[j]]  = (unsigned)  b & 7;
689
    DUMPBITS(3)
690
  }
691
  for (; j < 19; j++)
692
    ll[border[j]]  = 0;
693
 
694
  /* build decoding table for trees--single level, 7 bit lookup */
695
  bl = 7;
696
  retval = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl);
697
  if (bl == 0)
698
    retval = 1;
699
  if (retval)
700
  {
701
    if (retval == 1)
702
      huft_free(tl);
703
    return retval;                   /* incomplete code set */
704
  }
705
 
706
  /* read in literal and distance code lengths */
707
  n = nl + nd;
708
  m = mask_bits[bl];
709
  i = l = 0;
710
 
711
  while ((unsigned)  i < n)
712
  {
713
    NEEDBITS((unsigned)  bl)
714
    j = (td = tl + ((unsigned)  b & m)) ->b;
715
    DUMPBITS(j)
716
    j = td->v.n;
717
 
718
    if (j < 16)                  /* length of code in bits (0..15)       */
719
      ll[i++]  = l = j;          /* save last length in l         */
720
    else
721
      if (j == 16)
722
      {         /* repeat last length 3 to 6 times */
723
        NEEDBITS(2)
724
        j = 3 + ((unsigned)  b & 3);
725
        DUMPBITS(2)
726
        if ((unsigned)  i + j > n)
727
        {
728
          huft_free(tl);
729
          return 1;
730
        }
731
        while (j--)
732
          ll[i++]  = l;
733
      }
734
      else
735
        if (j == 17)
736
        {         /* 3 to 10 zero length codes */
737
          NEEDBITS(3)
738
          j = 3 + ((unsigned)  b & 7);
739
          DUMPBITS(3)
740
          if ((unsigned)  i + j > n)
741
          {
742
            huft_free(tl);
743
            return 1;
744
          }
745
          while (j--)
746
            ll[i++]  = 0;
747
          l = 0;
748
        }
749
        else
750
        {                      /* j == 18: 11 to 138 zero length codes */
751
          NEEDBITS(7)
752
          j = 11 + ((unsigned)  b & 0x7f);
753
          DUMPBITS(7)
754
          if ((unsigned)  i + j > n)
755
          {
756
            huft_free(tl);
757
            return 1;
758
          }
759
          while (j--)
760
            ll[i++]  = 0;
761
          l = 0;
762
        }
763
  }
764
 
765
  /* free decoding table for trees */
766
  huft_free(tl);
767
 
768
  /* restore the global bit buffer */
769
  fbb = b;
770
  fbk = k;
771
 
772
  /* build the decoding tables for literal/length and distance codes */
773
  bl = lbits;
774
  retval = huft_build(ll, nl, 257, fcplens, fcplext, &tl, &bl);
775
  if (bl == 0)
776
    retval = 1;
777
  if (retval)
778
  {
779
    if (retval == 1 && !fqflag)
780
    {
781
      Notify(0, _T("Fatal error: incomplete l - tree"));
782
      huft_free(tl);
783
    }
784
    return retval;                   /* incomplete code set */
785
  }
786
 
787
  bd = dbits;
788
  retval = huft_build(ll + nl, nd, 0, cpdist, fcpdext, &td, &bd);
789
  if (retval == 1)
790
    retval =0;
791
  if (bd == 0 && nl > 257)   // lengths but no distances
792
    retval = 1;
793
  if (retval)
794
  {
795
    if (retval == 1)
796
    {
797
      if (!fqflag)
798
        Notify(0, _T("Fatal Error: incomplete d-tree"));
799
//#ifdef PKZIP_BUG_WORKAROUND
800
//                            i = 0;  RCV not used later on why???
801
//#else
802
      huft_free(td);
803
//#endif
804
    }
805
//#ifndef PKZIP_BUG_WORKAROUND
806
    huft_free(tl);
807
    return retval;                   /* incomplete code set */
808
//#endif
809
 
810
  }
811
  /* decompress until an end-of-block code */
812
  retval = inflate_codes(tl, td, bl, bd);
813
fini:
814
  /* free the decoding tables, return */
815
  huft_free(tl);
816
  huft_free(td);
817
#ifdef TRACE_INFLATE
818
  if (Verbose < 0)
819
    Notify(ITRACE, _T("inflate_dynamic returning %d"), retval);
820
#endif
821
  return retval;
822
}
823
 
824
 
825
/* ===========================================================================
826
 * decompress an inflated block
827
        *e :: Last block flag.
828
 */
829
int UnzInf::inflate_block(int *e)
830
{
831
  unsigned t;                   /* block type */
832
  register ulg b;               /* bit buffer */
833
  register unsigned k;          /* number of bits in bit buffer */
834
  int retval = 2;               /* bad block type */
835
 
836
  /* make local bit buffer */
837
  b = fbb;
838
  k = fbk;
839
 
840
  /* read in last block bit */
841
  NEEDBITS(1)
842
  * e = (int)  b & 1;
843
  DUMPBITS(1)
844
 
845
  /* read in block type */
846
  NEEDBITS(2)
847
  t = (unsigned)  b & 3;
848
  DUMPBITS(2)
849
 
850
  /* restore the global bit buffer */
851
  fbb = b;
852
  fbk = k;
853
 
854
  /* inflate that block type */
855
  if (t == 2)
856
    return inflate_dynamic();
857
  if (t == 0)
858
    return inflate_stored();
859
  if (t == 1)
860
    return inflate_fixed();
861
 
862
fini:
863
  return retval;
864
}
865
 
866
 
867
/* ===========================================================================
868
 * Main entry to inflate a compressed file
869
 * decompress an inflated entry
870
 */
871
int UnzInf::inflate(bool defl64)
872
{
873
  int e;                        /* last block flag */
874
  int retval;                   /* result code     */
875
  unsigned h;                   /* maximum struct huft's malloc'ed */
876
 
877
//#ifdef USE_STRM_OUTPUT
878
//  if (fredirect_data)
879
//  {
880
//    wsize = fredirect_size;
881
//    Slide = fredirect_pointer;
882
//  }
883
//  else
884
//  {
885
//    wsize = UWSIZE;
886
//    Slide = Slide;
887
//  }
888
//#else
889
////    wsize = UWSIZE;
890
////    Slide = Slide;
891
//#endif
892
 
893
  if (Verbose < 0)
894
    Notify(ITRACE, defl64? _T("starting inflate64") : _T("starting inflate"));
895
  if (defl64)
896
  {
897
    fcplens = cplens64;
898
    fcplext = cplext64;
899
    fcpdext = cpdext64;
900
    ffixed_tl = ffixed_tl64;
901
    ffixed_bl = ffixed_bl64;
902
    ffixed_td = ffixed_td64;
903
    ffixed_bd = ffixed_bd64;
904
  }
905
  else
906
  {
907
    fcplens = cplens32;
908
    fcplext = cplext32;
909
    fcpdext = cpdext32;
910
    ffixed_tl = ffixed_tl32;
911
    ffixed_bl = ffixed_bl32;
912
    ffixed_td = ffixed_td32;
913
    ffixed_bd = ffixed_bd32;
914
  }
915
  /* initialize window, bit buffer */
916
  fwp = 0;
917
  fbk = 0;
918
  fbb = 0;
919
 
920
  /* decompress until the last block */
921
  h = 0;
922
  do
923
  {
924
    fhufts = 0;
925
    if ((retval = inflate_block(&e))  != 0)
926
    {
927
      e = 888;  // break loop
928
      if (Verbose < 0)
929
        Notify(ITRACE,
930
               _T("inflate_block returned poss error=%d, inflate will also return it"),  retval);
931
      break;
932
    }
933
    if (fhufts > h)
934
      h = fhufts;
935
    if (Abort_Flag)
936
    {
937
      retval = DZ_ERM_ABORT;//UEN_ABORT03;
938
      e = 999;  //break loop
939
      break;
940
    }
941
  }
942
  while (!e);
943
 
944
  if (defl64)
945
  {
946
    ffixed_tl64 = ffixed_tl;
947
    ffixed_bl64 = ffixed_bl;
948
    ffixed_td64 = ffixed_td;
949
    ffixed_bd64 = ffixed_bd;
950
  }
951
  else
952
  {
953
    ffixed_tl32 = ffixed_tl;
954
    ffixed_bl32 = ffixed_bl;
955
    ffixed_td32 = ffixed_td;
956
    ffixed_bd32 = ffixed_bd;
957
  }
958
 
959
  /* flush out Slide */
960
  if (!retval)
961
        retval = flush(Slide, (ulg)(fwp), 0);
962
//      retval = FLUSH(fwp);
963
 
964
  /* return success */
965
  if (!retval && Verbose < 0)
966
    Notify(ITRACE, _T("NO ERROR - %u bytes in Huffman tables (%d/entry)"),
967
           h * sizeof(struct huft), sizeof(struct huft));
968
  return retval;
969
}
970
 
971
 
972
/* ===========================================================================
973
 */
974
int UnzInf::inflate_free(void)
975
{
976
  if (ffixed_tl != (struct huft *)  NULL)
977
  {
978
    huft_free(ffixed_td);
979
    huft_free(ffixed_tl);
980
    ffixed_td = ffixed_tl = (struct huft *)  NULL;
981
  }
982
  return 0;
983
}
984
 
985
 
986
/*
987
 * GRR:  moved huft_build() and huft_free() down here; used by explode()
988
 */
989
 
990
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
991
#define BMAX 16                 /* maximum bit length of any code (16 for explode) */
992
#define N_MAX 288               /* maximum number of codes in any set */
993
 
994
/* ===========================================================================
995
 * Given a list of code lengths and a maximum table size, make a set of
996
 * tables to decode that set of codes.  Return zero on success, one if
997
 * the given code set is incomplete (the tables are still built in this
998
 * case), two if the input is invalid (all zero length codes or an
999
 * oversubscribed set of lengths), and three if not enough memory.
1000
 * The code with value 256 is special, and the tables are constructed
1001
 * so that no bits beyond that code are fetched when that code is
1002
 * decoded.
1003
         *b :: Code lengths in bits (all assumed <= BMAX).
1004
          n :: Number of codes (assumed <= N_MAX).
1005
          s :: Number of simple-valued codes (0..s-1).
1006
         *d :: List of base values for non-simple codes.
1007
         *e :: List of extra bits for non-simple codes.
1008
        **t :: Result: starting table.
1009
         *m :: Maximum lookup bits, returns actual.
1010
 */
1011
int UnzInf::huft_build(unsigned *b, unsigned n, unsigned s,
1012
           const ush * d, const uch * e, struct huft **t, int *m)
1013
{
1014
  unsigned a;                   /* counter for codes of length k   */
1015
  unsigned c[BMAX + 1];         /* bit length count table       */
1016
  unsigned el;                  /* length of EOB code (value 256)   */
1017
  unsigned f;                   /* i repeats in table every f entries    */
1018
  int g;                        /* maximum code length     */
1019
  int h;                        /* table level         */
1020
  register unsigned i;          /* counter, current code      */
1021
  register unsigned j;          /* counter        */
1022
  register int k;               /* number of bits in current code    */
1023
  int lx[BMAX + 1];             /* memory for l[-1..BMAX-1]  */
1024
  int *l = lx + 1;              /* stack of bits per table       */
1025
  register unsigned *p;         /* pointer into c[], b[], or v[]     */
1026
  register struct huft *q;      /* points to current table          */
1027
  struct huft r;                /* table entry for structure assignment   */
1028
  struct huft *u[BMAX];         /* table stack       */
1029
  unsigned v[N_MAX];            /* values in order of bit length       */
1030
  register int w;               /* bits before this table == (l * h)     */
1031
  unsigned x[BMAX + 1];         /* bit offsets, then code stack      */
1032
  unsigned *xp;                 /* pointer into x         */
1033
  int y;                        /* number of dummy codes added      */
1034
  unsigned z;                   /* number of entries in current table    */
1035
 
1036
  /* Generate counts for each bit length */
1037
  el = n > 256 ? b[256]  : BMAX; /* set length of EOB code, if any */
1038
  ZeroMemory((char *)  c, sizeof(c));
1039
  p = b;
1040
  i = n;
1041
 
1042
  do
1043
  {
1044
    c[*p] ++;
1045
    p++;                        /* assume all entries <= BMAX */
1046
  }
1047
  while (--i);
1048
 
1049
  if (c[0]  == n)
1050
  {              /* null input--all zero length codes */
1051
    *t = (struct huft *)  NULL;
1052
    *m = 0;
1053
    return 0;
1054
  }
1055
 
1056
  /* Find minimum and maximum length, bound *m by those */
1057
  for (j = 1; j <= BMAX; j++)
1058
    if (c[j])
1059
      break;
1060
 
1061
  k = j;                        /* minimum code length */
1062
  if ((unsigned)  *m < j)
1063
    *m = j;
1064
 
1065
  for (i = BMAX; i; i--)
1066
    if (c[i])
1067
      break;
1068
 
1069
  g = i;                        /* maximum code length */
1070
  if ((unsigned)  *m > i)
1071
    *m = i;
1072
 
1073
  /* Adjust last length count to fill out codes, if needed */
1074
  for (y = 1 << j; j < i; j++, y <<= 1)
1075
    if ((y -= c[j])  < 0)
1076
      return 2;                 /* bad input: more codes than bits */
1077
 
1078
  if ((y -= c[i])  < 0)
1079
    return 2;
1080
  c[i]  += y;
1081
 
1082
  /* Generate starting offsets into the value table for each length */
1083
  x[1]  = j = 0;
1084
  p = c + 1;
1085
  xp = x + 2;
1086
 
1087
  while (--i)
1088
  {                 /* note that i == g from above */
1089
    *xp++ = (j += *p++);
1090
  }
1091
 
1092
  /* Make a table of values in order of bit lengths */
1093
  ZeroMemory((char *)v, sizeof(v));
1094
  p = b;
1095
  i = 0;
1096
 
1097
  do
1098
  {
1099
    if ((j = *p++)  != 0)
1100
      v[x[j] ++]  = i;
1101
  }
1102
  while (++i < n);
1103
  n = x[g];                     /* set n to length of v */
1104
 
1105
  /* Generate the Huffman codes and for each, make the table entries */
1106
  x[0]  = i = 0;                 /* first Huffman code is zero     */
1107
  p = v;                        /* grab values in bit order     */
1108
  h = -1;                       /* no tables yet--level -1  */
1109
  w = l[-1]  = 0;                /* no bits decoded yet     */
1110
  u[0]  = (struct huft *)  NULL;  /* just to keep compilers happy   */
1111
  q = (struct huft *)  NULL;     /* ditto */
1112
  z = 0;                        /* ditto */
1113
 
1114
  /* go through the bit lengths (k already is bits in shortest code) */
1115
  for (; k <= g; k++)
1116
  {
1117
    a = c[k];
1118
    while (a--)
1119
    {
1120
      /* here i is the Huffman code of length k bits for value *p */
1121
      /* make tables up to required level */
1122
      while (k > w + l[h])
1123
      {
1124
        w += l[h++];            /* add bits already decoded */
1125
 
1126
        /* compute minimum size table less than or equal to *m bits  */
1127
        z = (z = g - w)  > (unsigned)  *m ? *m : z;       /* upper limit         */
1128
        if ((f = 1 << (j = k - w))  > a + 1)
1129
        {   /* try a k-w bit table *//* too few codes for k-w bit table  */
1130
          f -= a + 1;           /* deduct codes from patterns left  */
1131
          xp = c + k;
1132
          while (++j < z)
1133
          {     /* try smaller tables up to z bits  */
1134
            if ((f <<= 1)  <= *++xp)
1135
              break;            /* enough codes to use up j bits */
1136
            f -= *xp;           /* else deduct codes from patterns */
1137
          }
1138
        }
1139
        if ((unsigned)  w + j > el && (unsigned)  w < el)
1140
          j = el - w;           /* make EOB code end at table    */
1141
        z = 1 << j;             /* table entries for j-bit table */
1142
        l[h]  = j;               /* set table size in stack       */
1143
 
1144
        /* allocate and link in new table */
1145
//        if ((q =
1146
//               (struct huft *)  MALLOC((z + 1)  * sizeof(struct huft)))  ==
1147
//            (struct huft *)  NULL)
1148
        q = new huft[z + 1];
1149
//        if ((q = new huft[z + 1]) == NULL)
1150
//        {
1151
//          if (h)
1152
//            huft_free(u[0]);
1153
//          return 3;             /* not enough memory */
1154
//        }
1155
        fhufts += z + 1;     /* track memory usage               */
1156
        *t = q + 1;             /* link to list for huft_free()     */
1157
        *(t = &(q->v.t))  = (struct huft *)  NULL;
1158
        u[h]  = ++q;             /* table starts after link          */
1159
 
1160
        /* connect to last table, if there is one */
1161
        if (h)
1162
        {
1163
          x[h]  = i;             /* save pattern for backing up      */
1164
          r.b = (uch)  l[h - 1]; /* bits to dump before this table   */
1165
          r.e = (uch)(32 + j); /* bits in this table               */
1166
          r.v.t = q;            /* pointer to this table            */
1167
          j = (i & ((1 << w)  - 1))  >> (w - l[h - 1]);
1168
          u[h - 1][j]  = r;      /* connect to last table            */
1169
        }
1170
      }
1171
 
1172
      /* set up table entry in r */
1173
      r.b = (uch)(k - w);
1174
      if (p >= v + n)
1175
        r.e = INVALID_CODE;         /* out of values--invalid code     */
1176
      else
1177
        if (*p < s)
1178
        {
1179
          r.e = (uch)(*p < 256 ? 32 : 31); /* 256 is end-of-block code */
1180
          r.v.n = (ush)  * p++;    /* simple code is just the value   */
1181
        }
1182
        else
1183
        {
1184
          if (!e)
1185
            return 1;             /* RCV v1.6015 added               */
1186
          r.e = (uch)  e[*p - s];  /* non-simple--look up in lists    */
1187
          r.v.n = d[*p++ - s];
1188
        }
1189
 
1190
      /* fill code-like entries with r */
1191
      f = 1 << (k - w);
1192
      for (j = i >> w; j < z; j += f)
1193
        q[j]  = r;
1194
 
1195
      /* backwards increment the k-bit code i */
1196
      for (j = 1 << (k - 1); i & j; j >>= 1)
1197
        i ^= j;
1198
      i ^= j;
1199
 
1200
      /* backup over finished tables */
1201
      while ((i & ((1 << w)  - 1))  != x[h])
1202
        w -= l[--h];            /* don't need to update q */
1203
    }
1204
  }
1205
  /* return actual size of base table */
1206
  *m = l[0];
1207
 
1208
  /* Return true (1) if we were given an incomplete table */
1209
  return y != 0 && g != 1;
1210
}
1211
 
1212
 
1213
/* ===========================================================================
1214
 * Free the malloc'ed tables built by huft_build(), which makes a linked
1215
 * list of the tables it made, with the links in a dummy first entry of
1216
 * each table.
1217
        *t :: Table to free.
1218
 */
1219
int huft_free(struct huft *t)
1220
{
1221
  register struct huft *p, *q;
1222
 
1223
  /* Go through linked list, freeing from the malloced (t[-1]) address. */
1224
  p = t;
1225
  while (p != (struct huft *)  NULL)
1226
  {
1227
    q = (--p) ->v.t;
1228
//    FREE(p);
1229
    delete[] p;
1230
    p = q;
1231
  }
1232
  return 0;
1233
}
1234
/* 30/1/07 */